MODULO DI BASE NOZIONI SULLE FUL CELL E SULLA SICUREZZA DELL'IDROGENO

L' economia dell'idrogeno è stata considerata come punto cruciale nelle introduzioni delle energie rinnovabili.

Le celle a combustibile hanno un ruolo fondamentale nell'economia dell'idrogeno. Inoltre, diversi tipi di celle a combustibile possono essere alimentate con diversi tipi di fuel in grado di aumentare in modo significativo l'efficienza di conversione dell'energia. Seguendo questa idea, il corso ha l'obiettivo di fornire una panoramica sulle celle a combustibile e l'idrogeno.

Il corso è diviso in diverse unità che comprendono:

- Background sulle celle a combustibile e sulla storia, basi e di lavoro di diversi tipi di celle a combustibile, e applicazione delle celle a combustibile;
- Stoccaggio di idrogeno, la gestione e le infrastrutture, introduzione alla detonazione, deflagrazione e combustibili alternativi;
- Panoramica sul design degli stack e componenti, introduzione agli strumenti da utilizzare, normale funzionamento e controllo delle condizioni, calcoli, regole e applicazioni;
- Panoramica dei sistemi tenendo conto disegni tecnici, aspetti legati alla sicurezza, manutenzione, diagnostica e analisi dei guasti.

Al termine del corso l'allievo sarà in grado di:

- Spiegare i fondamenti di celle a combustibile a bassa ed alta temperatura;
- Comprendere i componenti usati in un sistema a celle a combustibile;
- Comprendere aspetti di sicurezza delle celle a combustibile e l'idrogeno;
- Leggere e identificare i diversi componenti del sistema attraverso disegni tecnici;
- Dimostrare la capacità di eseguire la diagnostica elementari e analisi dei guasti;
- Assemblare, smontare e operare sistemi fondamentali di celle a combustibile.

MODULO DI SPECIALIZZAZIONE GENERATORI A FUEL CELL (APU E SISTEMI DI BACKUP)

Le celle a combustibile possono essere considerate come generatori di energia. Un generatore convenzionale utilizza un motore a combustione interna per ruotare un alternatore e generare elettricità. Una cella a combustibile genera energia tramite elettroni e protoni presenti nel combustibile, convertendoli in energia elettrica.

In questo contesto, la prima unità riporta una introduzione agli impianti utilizzati come generatori, e quindi dà una descrizione dei maggiori componenti di un sistema a fuel cell.

E' riportata un'analisi dei maggiori componenti elettrici presenti in un sistema a fuel cell: componenti ad alta tensione, elettronica di potenza e convertitori AC/DC.

Il modulo riporta indicazioni su assemblaggio, procedure di funzionamento così che il tecnico avrà modo di osservare i possibili guasti e sarà in grado di comprendere e far fronte a pericoli che deve evitare facendo manutenzione e riparazioni al sistema.

In particolare <u>i principali aspetti discussi in questo corso sono:</u>

- Principi di funzionamento dei generatori a fuel cell, mercato di riferimento e visione dei maggiori sistemi a fuel cell esistenti;
- Nozioni di base di unità basate sulle celle a combustibile con una descrizione dei tipi di celle a combustibile, applicazioni e principi di funzionamento;
- Studio dettagliato dei maggiori componenti di un sistema a Fuel cell (tubazioni, valvole, compressore d'aria, sistemi di produzione, scambiatori di calore, etc);
- Configurazione dei generatori a fuel cell con aspetti progettuali e di sicurezza.

Dopo aver terminato questo corso lo studente sarà in grado di:

- Identificare i generatori a celle a combustibile, i principi di funzionamento e i diversi combustibili utilizzati;
- Identificare i maggiori componenti, loro assemblaggio e design;
- Identificare i possibili quasti, i componenti critici e la manutenzione da effettuare;
- Individuare i rischi o incidenti legati alla tecnologia dell'idrogeno.

A coloro che supereranno il corso verrà rilasciato un "attestato di conoscenza dell'idrogeno e della tecnologia fuel cell per tecnici: Generatori a fuel cell".