

UNIVERSITÀ

DEGLI STUDI

DI TORINO

The HyCARE Project

<u>M. Baricco</u>

Department of Chemistry and NIS University of Turin, Torino, Italy

marcello.baricco@unito.it

Marcello BARICCO

- PhD in Chemistry in 1987
- Full professor in Materials Science and Technology at the Department of Chemistry of the University of Torino (Italy).
- Coordinator of European projects (EU H2020 FCH JU HyCARE project)
- Expert in the Task 40 of the IEA-HIA
- Member of HER Scientific Committee of FCH-JU
- Coordinator of SP7 on Hydrogen Storage of JP on Fuel Cells and Hydrogen of EERA
- Member of Scientific Committee of Italian Hydrogen Association -H2IT.

Strong public-private partnership with a focused objective

EU Institutional Public-Private Partnership (IPPP)

To implement an *optimal research and innovation programme* to bring FCH technologies to the point of market readiness by 2020

FCH 2 JU Objectives

Market readiness of a portfolio of clean, efficient and affordable solutions for our energy and transport systems

Clean Transport

Eb-al

Reduce fuel cell system costs for transport applications

(称)

Green hydrogen production

Increase efficiency and reduce costs of hydrogen production, mainly from water electrolysis and renewables Heat & electricity production

4

Increase fuel cell efficiency and lifetime Minimal use of critical raw materials Reduce platinum loading

¥(

H₂ storage for grid balancing

н

Demonstrate on a largescale hydrogen's capacity to harness power from renewables and support its integration into the energy system

FCH JU programme implementation

Energy

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
- Fuel cells for power & combined heat & power generation

Transport

- Road vehicles
- Non-road vehicles and machinery
- Refuelling infrastructure
- Maritime rail and aviation applications

Cross-cutting

 E.g. standards, safety, education, consumer awareness ...

DC

Similar leverage of other sources of funding: 892 m€

Hydrogen Production Technical Coverage

95% of FCH JU support to green Hydrogen production

THE CALL

AWP 2018 - Topic 02-5-2018

Hydrogen carriers for stationary storage of excess renewable energy

• Challenge

Low cost H₂ storage:

- use of low-pressure (i.e. lower than 50 bar) storage based on hydrogen carriers could decrease CAPEX and OPEX of hydrogen storage significantly
- -Demonstrate efficient storage and delivery of H₂

• Scope

- -demonstrate a prototype of a storage system for an application with significant market potential
- integration of the prototype system from H₂ production to delivery is required within the project
- -achieve a break-through in increased energy efficiency and compactness

Impact:

- medium-scale prototype system with a capacity of > 50 kg H₂
- Discharge energy < 5.0 kWh/kg H₂; Total round-trip energy efficiency > 70%
- at least 250 cycles demonstrated, <0.2% loss of storage capacity per cycle
- -H₂ purity at point of delivery at least 99.99 %
- TRL 3 -> 5, FCH contribution of 2 MEuro, RIA

Green hydrogen from renewables

An innovative approach for renewable energy storage by a combination of hydrogen carriers and heat storage

What?	An innovative approach using hydrogen carriers and Phase Change Materials for the		
	storage of renewable energy.		
Why?	Current approaches for renewable energy storage in Europe are not efficient and require		
	a large footprint . No suitable systems are available up to now and hydrogen carriers		
	have the potential to solve these problems, but large-scale applications need to be		
	demonstrated.		
Who?	European leading research groups on solid-state hydrogen carriers (UNITO, CNRS,		
	IFE) and technology innovators (HZG , FBK), joining large companies on materials		
	(GKN) and energy (ENGIE) together with small-medium enterprises (STH, TD).		
Where?	The use of the developed system will be demonstrated at the Living Lab of ENGIE in		
	Paris.		
For whom?	For companies, regions and cities aiming to extend the use of renewable energies.		
Next?	The developed system will be exploited by companies for commercial applications and		
	by research centres for knowledge-based developments on hydrogen storage.		

Hydrogen CArrier for Renewable Energy Storage

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

The HyCARE Project

UNIVERSITÀ DEGLI STUDI DI TORINO

2019-2021

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

engie

ENVIRONMENT PARK Parco Scientifico Tecnologico per l'Ambiente

The goals

- High quantity of stored hydrogen >= 50 kg
- Low pressure < 50 bar and low temperature < 100°C
- Low foot print, comparable to liquid hydrogen storage
- Innovative design
- Hydrogen storage coupled with thermal energy storage
- Improved energy efficiency
- Integration with an electrolyser (EL) and a fuel cell (FC)
- Demonstration in real application
- Improved safety
- Techno-economical evaluation of the innovative solution
- Analysis of the environmental impact via Life Cycle Analysis (LCA)
- Exploitation of **possible industrial applications**
- Dissemination of results at various levels
- Engagement of local people and institution in the demonstration site

The concept

H₂-carrier and PCM

Figure 1 P-T relationship of the hydrogen carrier during the absorption and desorption steps.

Figure 2 E-T relationship for a phase change material during the solid-liquid phase transformation.

The integration

Figure 1 Thermal management during the hydrogen absorption step from the electrolyzer.

Figure 2 Thermal management during the hydrogen desorption step to the fuel cell.

Tailoring TiFe

Cu0: TiFe_{0.88}Mn_{0.02} Cu2: TiFe_{0.86}Mn_{0.02}Cu_{0.02} Cu4: TiFe_{0.84}Mn_{0.02}Cu_{0.04}

Multi-phase alloys: TiFe, β -Ti, Ti₄Fe₂O Good activation Fast kinetic Suitable hydrogen capacity

<u>↑ Mn,Cu cause:</u>

- \uparrow secondary phase amount
- \uparrow TiFe cell parameter
- \downarrow 1st plateau pressure
- \uparrow 2nd plateau pressure

Dematteis et al., JALCOM, 851 (2021) 156075 https://doi.org/10.1016/j.jallcom.2020.156075

Industrially produced **TiFe-alloy**

Leaend: Sp. 10 Sp. 13 Sp. 14 Sp. 15 Sp. 16 EDX on TiFe 0 11.65 11.75 12.22 13.01 11.30 12.44 12.16 11.66 5.22 embedded with AI 0.40 0.29 0.35 0.40 0.13 Si 0.29 0.20 0.26 0.27 0.24 0.25 0.34 0.33 **FEG-SEM** Ti₈₀(FeMn)₂₀ 46.74 Ti 69.14 67.60 57.09 68.13 68.83 57.06 57.67 57.60 Mn 3.26 2.71 2.92 2.51 2.70 1.93 instrument 3.32 3.14 2.82 Fe 27.72 15.26 16.85 15.33 16.09 27.62 27.02 27.70 46.10 Ti₄Fe₂O **Elemental map** Sp. 24 Sp. 25 Sp. 26 16.23 16.52 Ο 10.31 4.75 (Values in Inhomogeneity of composition AI 0.34 0.16 0.13 Η, Si 0.16 0.17 0.19 atomic%) MO-H Ti 72.21 53.25 50.95 47.33 Mn 2.78 2.43 2.02 2.32 H, M-H Fe 14.19 27.91 30.17 45.47 Ti K series Mn L series Fe L series Highlight of the Ti-rich phase **Produced by** Ti-rich

100um

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research".

100µm

100um

Thermodynamics

ACTIVATION

- 90 °C 6 h of vacuum
- 90 °C + 50 bar for 4 h
- Cooling down in 50 bar to RT
- Desorption at 90 °C under vacuum
- 10 cycles at 55 °C & 25-2bar (plant condition)

During initial activation cycling: fast kinetic (t₉₀ of few minutes)

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research".

Cycling in clean and dirty H₂

Absorption capacity after 240 min

Desorption capacity after 240 min

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research".

System design & prototype test

System design

Std. ISO Container

Metal hydride

• 4 ton of TiFe-alloy - \approx 40-44 kg of H₂

PCM

• 2.7 ton of CRODA

Zentrum für Material- und Küstenforschung

Prototype design

Metal hydride module

- 60 kg of TiFe-alloy
- pellets

PCM module

• 30 kg of PCM

Prototype test

- Models validation
- Optimization of the final design

 Helmholtz-Zentrum

 Geesthacht

 Zentrum für Material- und Küstenforschung

Amount of stored hydrogen

Quantity

High quantity of stored hydrogen

Energy efficency

HTF Inlet

Efficiency

<70%

Total round trip energy efficiency

Environmental impact

External energy source with innovative design for large scale storage and use of non-critical raw materials

HTF outlet

Expected Impact

S SER R

Support Services for Exploitation of Research Results

HORIZON RESU BOOSTER	LTS An initiative of the	European Commission
+ SERVICE 1 + + + + + + + + + + + + + + + + + +	SERVICE 2 BUSINESS PLAN DEVELOPMENT:	SERVICE 3 *GO-TO-MARKET SUPPORT:

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research".

Communications and Dissemination Activities

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research".

Acknowledgments

E.Dematteis,

J.Barale,

P.Rizzi

UNIVERSITÀ DEGLI STUDI DI TORINO

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research".

